Number-difference-phase uncertainty relation for NFM operational quantum phase description

نویسندگان

  • Hong-yi Fan
  • Min Xiao
چکیده

For the Noh, Fougers, and Mandel (NFM) operational quantum phase description, which is based on an eight-port homodyne-detection, we propose the number-difference-phase (ND-P) uncertainty relation and, then, discuss the mechanism of generation of ND-P squeezed states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fock representation for two-mode quantum phase operators’ eigenstates

The quantum phase description of Noh, Fougères and Mandel (NFM) leads to a two-mode theory of phase in the strong local oscillator limit. We show that the explicit form of the eigenstates of the sine and the cosine phase operators in two-mode Fock space can be constructed. This brings great convenience to the NFM quantum phase approach. Recently, phase operators and phase measurements in quantu...

متن کامل

Number-phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra

In this letter, the ”number-phase entropic uncertainty relation” and the ”number-phase Wigner function” of generalized coherent states associated to a few solvable quantum systems with nondegenerate spectra are studied. We also investigate time evolution of ”number-phase entropic uncertainty” and ”Wigner function” of the considered physical systems with the help of temporally stable Gazeau-Klau...

متن کامل

مطالعه نیمه‌کلاسیکی چند رابطه جابه‌جاگری تعمیم‌یافته

  Our aim in this paper is to find the observable effects of the generalized commutators. For this purpose we investigate two problems in quantum mechanics with minimal length procedure. Firstly, we study hydrogen atom energy levels via minimal length uncertainty relation algebra. From comparing our results, with experimental data we estimate an upper limit for minimal length. Secondly, we inve...

متن کامل

On the Number-phase Problem

The known approaches of number-phase problem (for a quantum oscillator) are mutually contradictory. All of them are subsequent in respect with the Robertson-Schrödinger uncertainty relation (RSUR). In oposition here it is proposed a new approacch aimed to be aboriginal as regard RSRUR. From the new perspective the Dirac's operators for vibrational number and phase appear as correct mathematical...

متن کامل

QUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS

As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003